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Lbstract

This paper desenbes thee coses stadies in the Dightweight application of formal methods w requirements modelling
for spacecraft fault protection systems, The case studies ditfer from previously yeporicd applications of Jormal
methods in that formal methods were applicd very cady in the requitenents engineenng, process, to validate the
cvolving requitements, The results were fed back into the prajects, ta improve the idonasl specibications. Yo cach
case study, we desenbe what methods were applicd, how they were applicd, how muoch eftort was involved, and whis
the findings were, Tu ol tiree cases, the formal modeling provided a cost cHective enhanceinent of the exasting
venheation and validation processes. We conclude that the benehits pained from cinly modehing of unstable
tequitements mote than outweigh the eftori necded to maintain moltiple representations.
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I Introduction

Recent studies have indicated that formal methods can offer significant benefits in impnoving the safety and
reliahility of Tnmpe softwane systems 1] However, despite the occasional suceess story, the uptake of formal methods
has been slow. Pario of the problem seems to be a chasim between the work on lormal methods described in the
literatore and the needs of industry {21, In this paper we pnesent thiee case studies of suceessfol application of fornmal
methods for requitements modeling. The studies demonstiate that a pragmatic, liphtweight application of formal
methods can offer a cost-effective way of nnproving the guality of software specifications.

There is anccmerging consensos that “formal tethods secin to find their most ef feetive application early in the
Ifeeyele, where conventional methods e apparently weakest."[3]. Stodies of change 1equests to the Space Shutile
flght software have demonstrated that formal methods are pariculanly good atimproving, the clinity and precision ol
requirements specifications, and i finding impariant and subtle crrars [4 6], This beneht coincides with @ serious,
unnict need in developing embedded, mission- cntical software: the need for canly feedback on the viability of a
system in the reguirements and high level design stages. “Faly fecdback is cracial to building safe software” 7).

The impotiance of caly feedback has been demonstiated cmpirically fron both an cconomic and a safety point of
view. Bochin showed that cairors we cheaper to fix the carlien they we detected inthe development lifeeycele [8], while
Putz showed that requirements enors ate more likely to be safety cutical (9] 1tis also clear that conventional
technigues fanl to catch many requitements cuors [10]) However, it has not yet been demonstrated that formal
methods offer a cost effective route 1o providing this feedback: the majority of requirement< modeling studies have
been post hoe reconstractions, in which results were not prodoced i time to affect the requirements definition phase
of a project.

This paper describes thiee pilot studies in the application of formal methods to the Verification and Validation
(V&V) of fault protection software on NASA spacecrafl. Two of the studies concern the International Space Station,
while the third concerns the Cassing deep space mission. For cach study, we describe what micthods were applied,
how they were applied, how much effori was involved, and what the outconme was,

The thiee studies share a nuber of sigmficant features:

1Y Formal miethods were applicd inresponse to an existing development problem involving requitcments. In
cach case the prablem was to provide anassuance that the faolt protection requirenients were conect. Iixisting
techmiques could not provide this asstance.

2) Formal methods were applicd selectively, i that only portions of the sequitements of greatest concern wee
modeled, and only a selection of properties of these requirements were analyzed. The forinal methods wese
applicd by avescarch temn working in parallel with the requitements analysts, rather than by the requirements
analysts themselves.

3) Inceach case, formal methods offered a pactial solution to the onginal problem. In pareular, they provided a
consistent requireinents model, and revealed a nmuber of cnors, some of which could not have been detected
using conventional approaches. However, in cach case the formahsation was incomplete. The studies increased
the confidence in the requirements, but did not guarantee the completencss and conectness of the
spectfications. We wrgoe that this is appropriate for caly modeling of requirements,

4) In cach case, the 1esults of the stady fed back into development process to inprove the producet.

We sumnivize observations on the utility of formal methods in these studies, and describe problemns we encountered
in applying thene Finally, we describe our cunient work exploring application of fonmal methods in evolutionary
desipn of new mehitectores for sutonomous spacearaft control systems, and the special challenpes of formally
modceling evolutionary designs.




1.  Background

1 Fault Protection

For NASA spacecraft, the term fault protection is nsed o describe systen elements that avoid, deteet and respond to
perccived spacecralt faults, There ae gencratly two over-tiding requitements when i fanlt occms: the system needs to
suatantee the completion of any time critical activities, and it needs to poarantee that the spacecralt is still safe,
ohservable and commandable. Various system level analyses are used to determine the possible faults that can oceu,
and somie faults may be considered out of scope for o fault protection system, if they ate reparded as too unlikely.

Fault protection software imust be capable of monitoring the health of both hardwine and softwine components, and
detecting “owt-of-tolerance” conditions, which may indicate the presence of a fault. Tn practice this s achicved by
defming a setof operating parameters for cach spacecraft function, where cach paraineter has anonnal operating
1anpe. Values outside this tange are ont of tolerance. An out-ol-tolerance condition may have many possible causes,
$01Uis portant 1o combine information from multiple sources inorder to Jocate the fault, The values neceded to
determine out of tolerance values for cach parncter are derived from the results of vanous system level analyses,
including failure modes and effects analysis (FMEAY), hazand analysis, and safety analysis. These analyses also
provide tules of inference for fault recovery.,

Foul protection software monitors forout of tolerance conditions, and initiates approptiate responses whicnisuch
conditions ae detected. Responses 1o loss of function include recovery (€. gL switch to atedundant backup), orrctry
(c.g.1e-start adevice inan attempt to 1estore functionality wheie no backup is available). Hazardous conditions

£ ncrally iequite @ ‘safing” 1esponse, to isolate the problem and minimize damage. For unmanned spacecraft, a
typical sal g 1¢8phonse is O shut down all non- critical functions, and ensuie the antenna is pointing towards Farth,
o await Turther commands fronm the ground. On Cassin, there is a requirement to be able to paintain such a safe
state forup to two weeks, Formanted spacecralt, such as the space station, theieis a possibility of crew
intervention, and a so a furthenreguitement is 1o isolate the fault o the smallest possible replaceatyle unit,

decause of the need to maintain a safe, habitable environment for the crew, fault protection on the space station has
additional requitcinents over those for unmanned craft, and the tenm Fault Detection, Isolation and Recovery (FDIR)
is used in preference to fault protection”. Responsibility for EDIR s divided up into Jayers, or domains, The lowest
domain is the individual device level, The nextlevel is the function that uses the device. After that come the
subsystem, and system contiol levels. The nghest level is manual FDIR.H any particular domain cannot provide
FDIR for some conditions, it must be provided by achigher level domain. YFor example, if an error condition involves
the interaction of two separate devices, then FDIR iight be provided by the subsysten level, 1ather than a the device
level.

Fault protection softwarce is a critical component of any spacecraft. A« this software only exccutes when a failore has
alicady occuned, itis important that the fault protection software responds conrectly to the failuie condition. If the
spacecrafl is executing a critical function (c.g. an orbital mancuver) when the failure occurs, it is also itnportant that
the fault protection responds quickly to allow the criticat function to proceed.

Fault protection operates asynchronously, and may be invoked at any thne. Henee, the addition of fault protection
software to a spacectalt system significantly increases the behavioural complexity of the softwane, The wide range of
possible interactions between fault protection and other systems makes it hard to venify the fault protection system.
Furthermore, enors are mote likely to occun daring critical functions, because of the extra load on the spacecraft, and
so fault protection software is more likely to be exceuted at the busiest tmes, Anccrror in the fault protection
software itself may compound an existing failure. T'his occunred on the inttial launch of Aviane 5, when the fault
protection softwate shut down two healthy computers, in response to an unhandled floating, point overflow exception
in a non-critical software function {11].

2 The Need for Formal Methods

Vormal methods offer an excellent opportunity to advance the state of the atiin V&V of tequiterents in arcas such
as spacectaft fault protection. Current requitements enpinceting processes within NASA rely extensively on manual
procedunes, largely based on inspection. Rigorous inspection processes help to remove a lage number of
speciication errors, but cannot provide the desired level of assurance for mission aritical softwanre. Renaining enors
are deteeted inan ad hoe way throughout the lifeeycle as the developers attempt to implenient and test the required
systein,
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Requitements enginecring processes within NASA appem to have reached a “quality ceiling” in which the cunently
cimployed development and assurance techniques have been optimized so much that no futther improvements can be
expected. This effect is shown in the data from formal inspections, in which the number of defects found in the
requireinents phiase is seven times higher than in the code phase {10} There is a sipnificant Yack of effective methods
and tool suppoil for the 1equitements phase in companison to those available for detailed design and coding.

The lack of 1igorons requitements engincening techniques is woll ilustrated in the fault protection area. Fault
Protectiontequitements are deliVe(l from failure models of the targetgystem, along with various siafety analyses.
From these sousees, individual tequitenents are written o identify di flerent fault conditions, initiate the appropriate
response, and monitor the outcome. Thie results are expressed jn a combination of tibles, diagrams and prose, with
an emphasis on prose for baseline requitements. The resultis a Jarge complex set of requirciments docur nents, in
whichinteraction s between requitements can be hard 10 identify, et alone vatidate . Futther probleins atise from the
fact that fault protection requiterents are more volatile that most other requitements, as they are sensitive to any
change during the developrnent of the tarpet systern.

‘The complexity of fault protection means that itis hard to demonstiate that the systein and softwiare requirements for
fault protection adequately desctibe everything that is needed to achieve the goal of providing robust spacectaft.
Formalmethods cambelp provide this validation ina munber of ways. The process 017 formalising aspecification
provides a simple validation cheek, in thatitforces alevel Of precision and explicitness far beyond that needed for
informaliepresentations. Onee aformal specification is available, it canbe formal challen ged 131, by defining
properiies that should hold, and proving that they do indeed hold. Formal challenges may be achieved both through
the use of mathemiati cal proofs, and through state exploration or ‘miodel checking”.

Rushby [3] points out that there is considerable scope for selective application of formal methods. Yor example,
formal methods can be applicd just to selected components of a systemn, and can be used just to cheek selected
propertics of thatsystem. Mostimpottantly, a gaeat deal of benefut can be derived from formal methods without
committing a project to the use of formal notations for baseline specifications. N the studies described in this paper,
we used formal modeling to find cirors in crtical parts of existing informal specifications, but did not replace the
imformal specifications with their formal counterparts. This approach is consistent with the advocacy of mliple
represcntations as a way of overcoming analysis bias.

3 F ormal Methods and NASA

A multi-centerteam withink NASA  has been exploring the potential of formalinethods [12, 13]. The team combines
persontie] with experience in formal methods, in the domains where formal methods are being applied, in softwae
assurance and V&V, and intechmology transfer. A senies of studies by this team have explored format methods on a
number of NASA programs, including Space Shuttle [S1, Space Station [ 14, 15], and Cassini [ 16). Throughout
these studies, the ernphasis has been on pragmatic application of formalmethods in areas where there appeans to be
the prcatest need. Results of these studies e descnbedintwo NASA  guidebooks[17,18)]).

Although some development of the methods themselves has been necessaty inorder to fit them to our purpose, this
has not been the main focus of the studies. Rather, we have concentrated on addressing issues such as:
» Can formal methods provide a cost effective addition to the existing: techniques for improving the quality of
1equitements specifications?
» Can formal methods incrcase the confidence in the validity of the requitements?
« Cun caly application of formal methods be beneficial even while requirements are volatile?
* How much effoit is needed to apply formal methods, and what is the most appropriate process for applying
them?
« Within any particular formal methods process, which activities icquite more effort, and which activities yiceld
the preatest benefits?

« Which formal methods and tools ate useful for which tasks?

1 this paper we descnbe the studies that were implemented in the carly stages of requirements fornew systems. To a
Larpe exte nt, these studies were responses 10 1eal needs on the projects. Incach case the study was ¢ onducted in
parallel with the requiteinents engineering process, so that results from the study could be fed back into that process,
This meant that the requitements were often still vol atile, and henee some effo it was needed to ensun e the formal
analysis was keptup to date. However, we fell it was important to demonstrate that formalinethiods could be applicd
in this context il we are ever o encoutage woider adoption across the agency.



Althiough the three studies described here used different tools and notations, the basic approach is the siime:
1) restate the requirements ina clear, precise and unambigoous format;
?) identify & correctinternal inconsistencies
3) test the requirements by proving statements about expected behavior.

4) feed the results back to the requirements authots.

11 two out of the three studics, step 1 involved anintetmediate, imformal notation, as a prelude to translating the
requitements into the fornal specification language. The intermediate notation helped to clarify ambiguitics, and gain
abetterunderstanding of the structure 01 the requirements. FThis in turn helped to determine how the formal notation
would be 11 sed.

Study 1: High level FDIR requirements for Space Station

The purpose of this study was to assist with the independent assessment of the fault detection, isolation and recovery
(EDIR) sequirements for the space station. Verification of the space station 1 DIR systems IS particularly
problematic, as FDIR functionality is distributed across many of the fli.gilt computers. The development and
construction schedule for the space station dots not peimit full integration testing of the entite architecture prior to
on-orbit assembly. Hence, FDIR functionality must be verified thrtough a combination of inspection, testing and
analysis.

Independent assessinent is an oversight activity, covet ing al aspects of the systern, including hardwaie, software and
operational procedures, The aim IS to assure anappropriate level of safety in the developuent of the space station. At
the time of this study, the independent assessment panel was seeking some assurance that the high level FDIR
conceptwas clearly defined and validated, before it flowed down to end item requirements. Subsequent chianges o the
EDIR concept would have significant impacts thioughout the requirements and design of the entire systein. For these
reasons, the independent assessment panel commissioned a formal analysis of the high level EDIR function. The
study was jointly funded by NASA headquarters, as partof the pilot Program jn formal methods.

The need that arose from the independent assessment dovetailed with the aims of the inter-center formal methods
tear, We had completed sorne prekiminary studies of Space Shuttle ye-engineering 1equitements [5], which had
de monstiated the potential for forrnal methiods as a requirements assurance technique. However, this work
concentiated on analyzi ng change requests for an existing systemn. The space station work was a chance to getin
catly in the high level (syste ) requireinents phase for an entirely new systern. We needed to investigate whether
there were any significantly diffetent problems associated with applying formal methods to the early modeling
activities in @ requitements phasc for a new systern.

1 Approach

Three views of" the FDIR had been documented: the functional concept diagran (FCD) which is a flowchar tlike
representation of the generic EDIR algor ithin; baseline FDIR 1equitements; and capabilities, in which the
1cquitements are grouped into related functional areas. This study concentrated on the first two of these views,
developing a formal model of each, and testing, traceability between them,

‘The fourstep appr oach described ab ove was used. In this study, restating the HFCD involve d a process of abstracting
out common features before it could be translated into PVS [19]. The baseline requirtements were translated ditectly
into }'VS. I'VS was chosen for this study, because it provided an automated theorem proving support, and because
the specification Janguage appeared to be readily understanclable to engincers and prograniners. Internal consistency
of the models was tested using PVS typechecking, while the expected behavior was analyzed by defining theorems
expressing requited propertics, and showing that they followed frotn the model using the PVS proof assistant.

The fur st step was to analyze the FCD. The orig inal 'CD containec 53 processing steps, making it rather complex.
As a fust step in the analysis, this diagram was pattitioned | in orderto create a more abstiact vie w. For example, the
first12 steps invol ved checking, par aincters for out of tolerance conditions, the next 7 dealt with safing, the next 8
dealtwith checking for functional faiture, and so on. Inaddition, cach step was labeled as one of three proceciunal
categories: petforming automated procedures, checking for anomalou s conditions, and recording/ieporting results.
Finally, the conditions underwhich control is passed to higherlevel FDIR domains were identific d. Six categorics of
condition under which this occurs wer e identificd . The result of this initial @inalysis was a more stractured (informat)




model 01 the FDIR processes. This model was informally checked for reasonableness, and for traccability to the
otiginal FCD. A number of anomalics wese discovered at this stage, which were ieported to the requitements authors

The next step was to formalise the modelin I'VS. A consistenttenminology was developed, and all objects and

attiibutes 1eferenced in the FCD were expressed in PVS. Figuie 1shows two fragments of PVS generated at this
stage. Thceresulting definitions were typechecked using the I'VS tool. Typechecking helped to eliminate several
types 01 etiorsin the specification, including typos, syntaxeriots andtype consistency criors.

message: type =

{ paramcter. OK,
paramct er. verificed,
safing not. allowed,
safing. exccuted,

)

% paramcter is ok when its tolerance
% check has just ran and the parawcter
% 1s OK (i.¢. within tolerance)
rr. paramcter. ok: axiom
forall (t: tolerance. check):
( on(just_ran(t, time) and
OK?7 (t {(time)))
iff
record. check (Liwe) (paramcter 0K, t)
)

Figure 1: Fragments of PVS specification, showing type definitions and axioms
uscdto express FDIR concepts

Finally, the PVS specification was validated by using the PVS proof assistant to prove clains based on the
specification. Al example of sucha claim is “@ any domain level, if a failure occurs then it will always berecovered
at some domain level”. Although this claim was not very profound, several missing assumpt ions were detected in
the process of proving il. Forexample, several sequencing, constraints needed to be defined explicitly, even though
the FDIR documentation had stated that no such constiaints should be inferred from the requirements. A total of 14
claims were defined and proved. Most of these were type cortectness conditions (TCCs), which mainly serve to
cnsure inter nal consistency of the model.

The second part of the study was to analyze the baseline systenrequirements for FDIR. A distinction can be drawn
between the primary space station systemn, and the FDIR system that monitors the primary system. The formal
modeling concentiated only on the Jatter. The prose requirements were translated into PVS, using the definitions and
types gencrated in the first part of the study. Translation of these requitementsinto PVS provedto be relatively
straightforward. Figure 2 gives an example.

Requirement : automatic harzard and harzardous condition detection: 1S8SA
shall auvtomatically detect any out-of-tolerance condition or functional
poerformance paramceter that exhibits a time to catastrophic or critical
cffect of legss than 24 hours.

avtomatic. hazard condition detection: axiowm
forall (p:paramcter)
param, out of tol?(p) AND time to effect (p)<24 >
exists(d:fdir. domain): detection(p,d) = auvtomatic

Figure 2: An example FDIR requirement, and its PVS translation

‘The process of translating these requitements revealed anumber of relatively minor ambiguities and
incompletenesses. For example, the distinction between the primary systeny and the FDIR system was not clear in
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the original icquirements. Other ambiguities st rounded the use of terms such as “anomaly”, “out-of- toler ance” and
“functional failure”.

I Taving modeled both the FIR concept diagram and the baseline requitements, the plan was to explose traceability
between the two. Aninitial analysis indicated that there was little traceability. The tequireinents authors confirmed
thatthe Iwo documents expressed di ferent kinds of requitements. The FCD describes the processing that is petformed
withinan FDIR domain, while. the baseline requirements describe @highes level view of the kinds of FDIR that must
be provided.

2 Findings

1n general, the FDIR requirements were well thought out, However, although the FDIR 1equiteme nts tea
understood them, there \as some question over whether the documentation was sufficient S0 that systeindevelopers
and othes stakeholders would understand them. A total of fifteenissues were documented and discussed with the
requitements authors. Most of thiese we 1e minot ambiguitics, inconsistent use of terms, and missing assumptions,
discovered during the process of formalisation, which 1educe the ability 01 developers to understand the sequireinents,
Three of the issues were regarded a “high-major™:

[ ) There were inconsistencies in the FCD over reporting the status of safing, recovery and retry procedur ¢s. The
mtention was that the FDIR processes should 1eport their status before, during and after execution of each procedure.
However, some of the procedutes were missing requiteinents for some of the reporting activities, S0 that most of
them (:id not have requirements to report status at al three points. This was detected during the initia analysis of the
FCD diagram.

?) The proper sequencing of FDIR processing is not clear from } CD. Although the FCI looks like a flowchart, the
accompanying text makes it cleat it should not be interpreted as a sequential process. However, some impor tant
requirements can only be in ferred by treating it @s a sequential process. Forexample, itis not clear whethiersafing
should be performed before isolation, although the diagraim scems to imply itshould be. ‘Ibis problem was detected
duting the proof process: somne of the sequencing requirements had to be dated explicitly in o1der to prove necessary
propet lies of” the FDIR model.

3) No sequitements are. given for checking inconsistencies between parameters; the iequitemnents only mention limit
checking of individual parameters. The requirements team clearly intended that inconsistency checking should be
included. This problem was discovered duting the process of formalising the baseline requirements.

3 Observations

The study analyzed 18 pages of IR requitements, and was conducted over @ period of two months, by two people
wor king par t- time. The total effort was approximately ? person-months. Reformulation of the FCIY was the most
cost effective partof the study. Typechecking of the PVS specifications was also relatively inexpensive, and useful
primarily to remove mistakes that weir introduced in the translation process. The proof exercise was costly (mainly
because of the expertise needed), but paid off interms of checked assumptions, and confidence in the accuracy of the
model. The effortand tirnc.scale of the study were consistent with the normal V&V processes for the requirements
phase. Inthis study, formal analysis provided a cost-effective enhancement to existing practices.

The requitements’ authors reviewed the results of the study. Some of them also reviewed the approach and the
resulting formalisation in detail. They had a strong desire to make sure the requirements wete clear and unambiguous
Many of the findings of the study coincided with the types of questions that were beginning to arise from the teawms
charged withimplementing FDIR. 1’0 some extent the requirements - authors wanted more than this study could
offer: they wanted to know whether the FDIR as specified would work cotrectly. A follow-up study is being,
conducted to help address this question, but is not complete a the time of wiiting.

Study 2: Detailed Bus FDIR requirements for Space Station

This study cianbe seen as a natural follow on to the previous one, although it was not originally planned as such.
The purpose of this study was to analyze the detailed FDIR requirements associated with the bus controller for the
main 1553 communications bus on the space station, These requircments reptesent @ conerete implementation of the
high level FIDIR coin-JIIs addressedinthe first study.



The study was initiated by the Independent Vearification and Validation 1 V& V) teamn. IV&V is apractice in which a
separate contractor is hired to analyze the products and process of the software development contractor [20]. The
IV&V team \vas having particular difficulty validating the bus FDIR requirements, as they were hard to read, and
some of the propertics they wished to test could not be established using existing in formal methods. The study was
conducted by the research team, as partof alager study of the use of multiple representations in the V&V process.

The requirements for Bus FDIR were expr essed innatural tanguage, with @ supporting flowchart showing the
processing steps involved. The flowehar | (lid nothave the status of a requitement, but was merely provided for
puidance; the intention was that the prose comnpletely expressed the requirements. The prose contained a number of
Jong complicated sentences, expressing complex conjunctions and disjunctions of conditions. The IV&V team had
recommended thatto improve clarity, the requirements should be re-written in a tabular form (specifically, as tuth
tables similarto those used in[21]). ‘lbis yecommendation had beenicjected because of the cost involvedinie-
writing them all. Hence, the IV&V team generated their own tabular versions, in order to facilitate the kinds of
analysis they wished to peiform.

1 Approach

The four step approach was used as follows. Each individual requi rement was restated as a truth table, to clarify the
lagic. These wete then combined into a single state-iachine model, using SCR [22]. SCR was chiosen for this study
asit offared atabularmotation that colic.simiKled well to the truth tables that the 1IV&V team had already adopted, and
it provided tool support for checking consistency o f SCR model s, Consistency checking involved type checking of
the SCR specification. Proper ties of the model were then tested in two ways. First, static properties of the state
model, such as disjointness and coverage, wc]c.tested using the built-in checkerin the SCR tool. Second, dynamic
proper ties of the model were tested by translating the SCR state. machine model into PROMILA {23, and applying
the SPIN mode! checker to explore its behavior.

The generation o f a tabular interpretation of cach individual requirement proved to be hard, as there are a nuinber of
ambig uities in the prose requirements. These armbiguitics concern the associatively of ‘and’ and ‘o1’ in English, and
the correct binding of subclauses of long sentences. For example, in figure 3, it is not clear what the phrase “in two
consecutive processing frames” refers to. To confirm the existence of such ambiguities, the requirement shown in
Figur ¢ 3 was given to fown different people, for translation into tabular form. Four semantical ly different tables
resulted. By comparing these differentinterpretatio ns, an extensive list of ambiguitics was co mpiled. The

ambig uities were resolved through detailed reading of the documentation, and questioning the original authors. This
process also revealed some inconsistencies in the way inwhichteninology was used.

(2.16.3.1) While acting as the bus controller, the C&C MDM CSCI shall
scot the e,c,w, Iindicator identified in Table 3.2.16-11 {for the
corresponding RT to “failed” and set the failure status to “failed” for
all RT's on the bus upon detection of transaction orrors of selected
nmessages to RTs whose 1553 FDIR is not inhibited in two consecutive
processing frames within 100 millisec of detection of the second
transaction error if; a backup BC is available, the BC has bheen switched
in the last 20 sec, the SPD card resct capability is inhibited, or the
SPD card has been reset in the last 10 major (10-sccond) {rawmes, and
¢cither:

1. the transaction errors are from multiple R7's, the current chanmnel
has boen reset within the last major frame, or

2. the transaction errors are from multiple R1's, the bus channel's
reset capability is inhibited, and the current channel has not been
reselt. within the last major frame.

Figure 3: An example of a level 3 requirement for Bus FDIR. This requirement
specifies the circumstances under which all remote terminals {(RTs) on the bus
should be switched to their backups.




C&C MDM acting as the bus controller _ T i i T
Detection of transaction errors in lwo consecutive processing T T I T
frames —_
Cl101 sarc onselected messages T T T T
the R'1's 1553 FDIR is notinhibited T T T T
AbackupBCisavailable | _l_ l_ T T
A | The BC has been switched in the last 20 seconds j | {1 ] |
N The SPD card reset capability is inhibited ) " _l T B
D | The SPD card has been resetin the last 10 major (10 second) : . v gy
frames . | N
The transaction errors are from multiple RTs . ‘I_ _l_ _l !
The current channel has been reset within the Id_qt nmjg'_ﬂamnem__ T K T I
The bus channel's reset capability is inhibited T | - _'] T

Table 1: The tabular version of the requirement shown in figure 3, showing
the four conditions (the four columns) under which the action should be
carried out. A dot indicates “don’t care”.

} laving obtained a clearer state.rnent of the requirements, the next step was to explore some of the propertics that
oughtto be true of these requirements. Iixample propel lies are “for each combination of failure conditions, there is
an FDIR response specific & and “for each com bination of failure conditions there is at most one FDIR response
specified”. These properties correspond to checks fot coverage and com pleteness of amode table in SCR. Hence, by
constructing astate bawd modelin which cach of the. sequirements iepresented a transition from the “nonmal” mode
to a unique failure mode, the coverage and disjointness tests provided in the SCR tool would test these propertics. AS
aresult, anumber Of disjointn ess probleis were identif’led, which are described below.

The fina part of this study was to ex plore some of the dynamic proper tics of the model. For example, some of the
1equit ements expr ess conditions that test whether various recovery actions have ali eady been tried. In order to validate
these conditions, it was necessary to explore the dynamic behavior of the specified system in tbe face of multiple
failuies, andrecurring failures. To do this, the state-basc(l modelexpressed in SCR was trandated into PR OMELA,
and the model checker SPIN \vas used to explore the behaviors, The translation into PROMELA indicated some
inconsistencics in the timing constraints that had not been revealed in the SCR model. Once these were fixed, the
model was checked for proper-lies such as “if anerror persists after all recovery actions have been trial, the bus FDIR
witl eventually report failure of itsclf to a higher level FDIR domain™.
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Figure 4: A graphical representation of the SCR mode table. Each requirement
specifies the conditions for a single mode transition.

2 Findings

In addition to anumbet of minor problems with inconsistent use of terminology, the following major problems
were repor led:

1) There were significant ambiguities in the. prose requitements, as aresultof the complex sentence structure. Some
of these ambiguities could be resolved hy studying the higher level EDIR requirements, and the specifications for the
bus architecture. The ambiguitics that arose from the combination of ‘ands’ and ‘ors’ in the same sentence could not
be resolved in this way, and could lead to mistakes in the design. Thesc amnbiguitics were detected in the initial
reformulation of the requirements as truth table.s.

2) There was one missing requirement to test the value of the Bus Switch Inhibit Flag before attempting to switch
to the backup bus. This was detected during the test for disjointness in the SCR specification.

3) The prose requirements Were missing anumber of preconditions thatenforce the ordering in which the inference
rules should be applied. The accompanying flowchart for these requirements implied a sequence. for these rules. An
attempt had been made in the prose requirements to express this sequence as a set of precon ditions for each 1ule, to
ensure that al the earlier rules have been tested and have failed. The preconditions did not completely capture the
precedences implied by flowchart. This corresponded with an informal obser vation made hy the IV&V team that the
ordering of the requirements should be made explicit. This problem was found during the test for disjointness in the
SCR specification.

4) The timing  constraints expiessed in the requitements weic incorrect. Several of the failure isolation tests referred
to testing whether certain FDIR actions had already been tried “in the previous processing frame”. However ,as each
FDIR recovery action is followed by atime-out in order for the action to take effect, and as further FDIR
intervention is only initiated on occurrence of errorsin two consecutive processing frames, these tests earl ne ver he
true. This was discovered during model checking of the PROMELA model.

3 Observations

The study analyzed 15 pages of level 3requirements, and was conducted over @ period of four months, by one person
working pait time. The total effort was approximately 1.5 person months. The main effort was in formalising the
requirements. Translation from the SCR model to PROMELLA was relatively straightfor ward, and took two days
effort. Onceaformal model was obtained, testing of the proper lies was straightfor ward, as both the SCR tool and the
SPIN mode! checker provided facilities forautomated checking of these propeities, and provided counter-examples
when the tests failed. Although problems were found both during formal isation and the property checking, the latter
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problems were more serious. [ isunlikely that they would have been discovered in this phase without the usc of
formal methods.

A major problem during this study was the volatility of the requirements. Nc-w drafts of the requirements document
were being released approximately every two months. This meant thatin at least onc case (finding 3 above), the.
problem had alicady been fixed try the lime it was discovered in this study. This issue had already been observed
informally and reported by the 1V&V team, and had been addressed hy reducing the complexity of this section of the
requitements. We mitigated the problem of fluctuating requitenients hy only doing the minimum amount of
modeling necessary totest the properties that were Ofinlcrcsl.}*'()rcxznn{)lc, the SCR model is not a complete state
Model, as it models only a subset of the date transitions expressed in e requirements. The wansitions for 1ctuming
to the not mal state have not been modeled. This partialmodel was sufficient to petform the coverage and disjointness
analysis.

It should also be noted that in order to perform the analysis in this study, the SCR notation” was slightly misused.
The modes shown in figure 4 (k) not represent true modes in the SCR sense - amore correct representation would
express these as output events from the I'DIR system. However, defining them as modes petinitted the usc. of
coverage and disjointness tests on the. transitions. This represents a pragmatic approach in which the formalmethod
is applied in whatever way gives the most benefit, without necessarily following the originalintent of the method.

Study 3: Fault Protection on Cassini

The third study concerns the systen level fault protection software for Cassini. Cassiniisa deep space probe, to be
launched in 1 997, which will explore Saturnand its moons. System reliability is a major concern for Cassini, duc to
the duration of the mission. Fault protection is a major factor in providing the required levels of reliability. Fault
protect ion soft ware is therefore mission-critical, in addition to being a Complex embedded system. The study
examined the. requirements for two main components of the fault protection system: the software executive that
manages fault protection, and requirements for putting the spacecraft into a safe state.

The aim of this study was to explore the effectiveness of formalmethods in supplementing traditional engincering
approaches to requirements analysis. The Cassinj project was interested inthe potential of formal methods to provide
an assurance that the fault Protec tion requirements were conrect, while the formal methods team was interested 1n the
opportunity to apply forma methods early in the 'equirements process, where tally modeling of unstable
requirements might pose a challenge.

1 Approach

Tor this study, the initial step of re-stating the requirements included the use of OMT diagrams. These were. them
used to guide the development of a PVS model of the requirements. Once the PVS model was checked for internal
consistency, a nutber o f proper ties were defined | check that the spftware would function correctly and be hazard

fice.

The firststep was the production of OMT diagramns representing the documnented requirements (see figme 5). The
originalrequirements were expressed in natural language. The producti on of object diagrais, state diagrams and
dataflow diagrams, according to the OMT mcthod, helped to define the boundarics and Interfaces of the fault
protection requirements, and helped to crystallize some of the issue.s that arose in the initia close reading of the.
requitements. A number of issues having to do with IMpIecisc (erminology, inconsistency between text and tables,
and unstated assumptions were discovered during the OMT modeling.
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Figure 5: An example OMT state diagram for fault protection

The OMT diagrams them served as aframe for the subsequent formalisation. A PVS model was produced directly
fiom the OMT models - the elements of the OMT model often mapped onto elements of the formal model in a
relatively straightforward way. For example, object classes mapped onto type definitions in PVS, while state
transitions mapped onto functions and axioms.

Once the I'VS mode] was completed, anumber of lemmas were defined to examine various properties of the
requitements. Three different categor icS of propeity were examnined:

1) requirements-met. These lemmas helped to trace the model back 10 the documented requireinents, and ensure that
the model accurately captured the documented requirements (see figure 6). Yor example, a requirement “If aresponse
can be initialed by more than one. monitor, each monitor shall include an enable/disable mechanism™ was expressed
as alemia, to test whether the modelmet this requirement. in this category, sevenlemmas were proved, and three.
disproved.

2) safely. These lemmas represented conditions that should not arise, (0 lest that “nothing bad ever happens’. 1 or
example, “A fault protection response shall not change the instrument’s status during a Critics] sequence of
commands”. Seven of these lemnias were proved.

3)livencss. These lemmas describe the correct behavior, i.e. that “something good will eventually happen”. An
example is “if a response has the highest priority among the candidates and dots not finish in the current cycle, it
will be active in the. next cycle’. Seven of these lemmal we re proved.




Cassini Requirement: 1f Spacecraft Safingisreguested via acCDhS
(Command and Data Subsyst em ) int ernal request whi le the spacecraf t is in
a criticalat. t i tude, then no change is comwanded t o the AACS (At tit ude
and ArticulationCont rol Subsyst em) atti tude. Ot herwise, the AACS i s
comnanded t o the honwebhase at t i t ude .

saf: THEORY

2 kxample is excerpted from saf theory.

% Spacecraft safing commands the AACS Lo homebase mode, thereby
% stopping delta-v's and desat's.

RBIGIN

aacs_mode:  1TYPE = {homcbhase, detumble}
attitude: TYPE

cds internal_request : VAR bool
critical_attitude: VAR bool
preov__aacs_mode: VAR aacs. mode

aacs_stop_fnc (critical. at titude, eels. internal request, prov sac-s. mode) :
aacs_ mode =
1F critical. attitude
THEN 1F eels. internal. request
THEN prev_ sacs. mode
Eli Sk home base
FNDIF
F1.SE homebase
ENDIF

% Lemma prove n, providing assurance that PVS specificati on mat. ches
% documented re gui rement .

aacs. safing_ regqmet_1: 1.EMMA
(critical_ attitudeANDcds. internal. request-)
OR (sacs. stop. fnc (critical _attitude, eels. internal_ request ,
prev_aacs_mode ) = homehase )

END saf

Figure 6:An example Cassini fault protection requirement, a fragment of PVS
representing this requirement, and an associated ‘requirements-met’ lemma.

2 Findings
A total of’ 37 issues were identified during the study. These were classified as follows:

Undocumented assumptions: 1 1, All were correct, but some significant ones needed documentation, to prevent future
errors, especially at intci-faces, These were identified during the process of formalising the requirements.

Inadequate 1equivements for off-nominal os boundary cases: 1 (). These issues usually involved unlikely scenar i0s, and
the spaceciaftenginecrs had to help decide which were credible. Anexample case is when several monitors with the
same priority level detect faults in the same cycle. Documentat ion of these cases is useful, as it helps to verify the
1obustness of the system.

Traccability and inconsistenc y: 9. There we t ¢ anumber t1 actability problems between different levels of
requirements, and inconsistencies between requirements and subsystemn desig ns. Many of the latter were significant,
as the correct functioning of the system depends on choosing” the comet interpretation. For example, the high level
requitements ass umne thatmultiple detections of faults, occurring withinthe response time of the first fault are




symptoms of the origina fault, whercas the lower level requirements correctly cancel a lower priority fault response
to handle a higher-priority one.

Imprecise terminology: 6. These were largely documentation problem, including synonyms and related terms, and
wer e1evealedduring the process of defining the PVS model.

1.0gicalError: |. This was a problem of starvation whenarequest for seiviceis pre-empted by a highei prior ity
request. The issue was first spotted during initial close reading, and confitmed by disproving a lemma.

3 Observations

The study analyzed eighty-five pages Of documentedrequitements. Fifteen pages of OMT diagrams were produced,
followed by (wenty-five pages of JVS specifications. Twenty- fou lemmas were proven. The study was conducted
overthe period of a year by two people working patt-time, with atotal effort of approximately twelve person-
months. The main effort came in Iearning to effectively usc the PVS theorem provel.

OMT models were found to be useful as afirst step in developing formal specifications. The OMT diagrams bounded
the softwar ¢ & an appropriate level of abstraction, offer ed multiple perspectives on the requirements, and were casy
for Project personnel to review foraccuracy. Since the elements of OMT diagrams often mapped directly onto
elements of the formal specifications, the subsequent effort of formalization was reduced. Iterations of the OMT and
PVS models still occurred while proving claiis about the model, but the conciseness and readability of the. OMT
notations made it easier to confirm the accuracy of the models. In effect the. OMT model provided a higher level
structural view of the requirements, while the PVS models filled in the. processing details, and allowed detailed
behaviora analysis.

The requireinents that were analyze.d were knownto be influx with several key areas (e.g. timing, number of priority
levels) still being determined. Time was spent keeping the models current with the updated requirements. This extra
effort was balanced against the advantage that issues identified by the formal analysis were readily fed hack into the
development process, leading to improved requirements.

A key concern of the rc.searchers was whether formally modeling requirements that were known to be unstable was a
waste of effort.In general, the effort in this study was found to be worthwhile because the modeling so effectively
laid the foundation for future work, alowing rapid response to proposed changes o1 alternatives by the Cassini
Project. in addition, the work bad the anticipated advantage of adding confidence in the adequacy of the requirements
that had been analyzed using formal methods. in some cases where requirements issues were. still being worked by
the Project, the formal methods cffor 1 was able to assist by formalizing undocumented concerns (e.g., whether
starvation of tasks would be possible) clearly and unambiguously.

V. Discussion

The studies described in this paper differ from previous studies in the literature in several ways. The major ity of
published case studies of the usc of formal methods are post hoc applications to on-going or finished projects. Such
studies demonstiate what formalimethods can do, and help to refine the methods, but they do not help to answer
questions of how suchinethods can be integrated with existing practices onlarge projects. A few notable exceptions
have used forma] methods ‘live’ during the development of real systems [, 2 1, 24, 25]. However, in all the.sc cases,
the emphasis was on the use of formal notations as a part of the baseline specifications, from which varying degrees
of formalverification of the resulting design and implementationare possible.

In contrast, we applied formal methods only in the early stages of requirements € ngineering, during which the
requirements were still volatile. Rather than treating formal specification as an end product of the requirements phase,
we used it to answer questions and improve the quality of the existing specifications.

In the longer term we hope to introduce formal methods throughout the lifecycle. Our experiences with these studies
indicate (hat we can best do thisincrementally, in response to real needs in specific projects.

Ourapproach dots not fit with any of the three process mode.ls suggested by Kemmerer [25] as ways of applying
formalmethods. Kemmerer offers three alternat i ves: nj’let-fhe-~(wf, in which a formal specification is produced at the
end of the development process to assist with testing and certification; parallel,in which formalspecifications are
developed alongside a conventional development process, and usedto perform verification of code, design and
requitements; and inzegrated, in which formal specification is used in place of conventional approaches, Qur studies




supgest afourth model, in which formal modeling is used lo increase quality during the requitements and highlevel
design phases, without necessarily producing a baseline formalspecification, o1verifying low level desig nand code

Our studies also demonstrate that questions of tool support need not beabartictto the adoption of formal methods.
We conducted sophisticated validation 0f our models, via theorem proving andmodel checking, using tools that arc
essentially till research prototypes. In the 12 case studies sutveyed by Gerhart et al. [24], tool support was
eenerally only used for syntax checking of specifications, and Gerhartsuggests tool impoverishment isabatrier to
wider use of formalmethods. This may be true forthe more complete process models used in case studies of the
kinds described by Kemimerer [25], Hall{1] and Gerhart[24], butis not truc of the ‘lightweight” application of the
kindwe adopted.

Most of our observations of the benefits of formal methods are consistent with findings elsewhere. For example, wc
noted thata large number Of minor problems are discovered during the process of formalising the requireinents, and
that the use. of formal methods helps to focus attention on arcas that are more susceptible to errors [26], Formally
challenging the models uncovered a smaller number of more subtle issues, of the kind that arc hard to detect
manually. Like Hall[ 1 ], we found that the usc of intermediate , structured representations greatly facilitated the
process of formalising the requirements.

Although we have not attempted any detailed quantitative analysis of the costs and benefits of the application of
formalmethods in these studies, itis clear that in each Case the study added value to the project by clarifying tbc
requirements and identifying important errors very early in thelifecycle. The costs, in terms of time and effort, were
consistent with existing V&V tasks on these projects.

A number of observations arising from these studies at-e worth further discussion:

Who should apply the methods?

in cach of the studies, the formal analysis was conducted by experts in formal methods, who were external to tbc
development project. There was asimple financial reason for this: it is cheaper and lower risk to have a smalltcam
of formal methods experts develop the specifications and perform the analysis than it is to train members of the
development team. Out longer term goat is to have the developers produce formal specifications themselves, with a
V&V team performing the analysis.

} lowever, there arc some interesting consequences of our use of external experts 1 developing formal models of
informal specifications involves a great deal of effort inunderstanding the domain, anti figuring out how to interpret
the documentation. As our externalexperts were unfamiliar with the projects prior to the studies, they did not share
the. assumptions that the requirements’ authors bad made. Our experts questioned every thing, spurred on by the
explicitness needed to build the formal models, They also needed to present parts of their models back to tbe
developers, in order to check the accuracy of their interpretations. The result was ahealthy dialogue between the
developers and our formal methods experts. This dialogue exposed many minor probleins, especially unstated
asstmptions and inconsistent usc of terminology. This dialogue was clearly an important benefit.

Another aspect of this dialogue was that some of the issues that were raised were the result of misunderstan dings by
our experts, rather than genuine errors. The require.rnents authors therefore had to filter the issues, to pick out those
forwhich the benefits of changing the requirements out-weighed the cost. ‘I his was especially true when the analysis
1evealed “interesting”” off-nomina cases. A great deal of domain knowl edge was needed to judge whether sue}) cases
were I casonable. The need for such filtering would be greatly reduced if the analysis was conducted by domain
experts; however, the risk of analysis bias would then increase.

Is formal modeling of volatile requirements worthwhile?

During carly stages of the requirements process, there may be a great deal of volatility. In each case study, some
effort was needed to keep tbe formal model up to date with evolving, requirements. However, the studies indicate that
there is no need to wait for the requirements to stabilize before applying formalmethods. Early forimalisation alowed
usto crystallize some of the outstanding issues, and explore different options. Most importantly, it is during this
carly phase that the development team is most receptive to the issues raised from tbe formal modeling. This again
emphasizes the importance of lightweight formal methods: tbc formal model itself can be discarded if the
requirements change significantly, while the experience and lessons learned from it arc retained.



Were intermediate representations useful?

Intermediate representations were an important part of the formalisation process in each study. The type of
intermediate representation varied across the studies: the first study used an annotated version of the original FCI
flowchart, the second study made use of truth tables to clarify complex predicates, while the final study made
extensive usc of OMT diagrams. A large part of the effortin the formalisation process lies in understanding the
existing requirements. These intermediate representations helped to refine this understanding, and therefore reduced the
cffortneeded to generate and debug the formal models.

The intermediate representations also helped to create some initial structure for the forma models. They assisted with
traceability between the formal and infor mal specifications, making it simpler to keep the formalmodel current.
Iromowrexpetience thus far, itseems that this benefit more than outweighs the extra cost of maintaining scveral
representations, even during the early stages when requirements are most unstable,

V1. Conclusions

The three studies desctibed here were conducted as pilot studies to demonstrate the utility of formal methods and to
help us understand how to promote their use across NASA. An important characteristic of these studies is that in
each case the forial modeling was can ied out by asmall team of experts who were. not part of the development
team. Results from the forma modeling were fed back into the requirements analysis phase, but no attempt was
made to introduce formal specificationlanguages for baseline specifications.

Wc have shown that lightweight formal methods complemented existing development and assurance practicesin
these projects. If forma methods is seen as an additional tool in the V&V toolbox, then widespread application to
existing large projects becomes feasible.

Asa follow-up to the studies described here, we have begun to investigate the role of formal methods in the
development of new spacecraft technology. As part of NASA’s Ncw Millennium program, ncw architecture.s arc
being developed using knowledge based systems to red uce the 1eliance of the spacecr aft on ground support. Rather
than produce a detailed statement of requirements, the project isusing arapid prototyping approach to explore the
capabilities of the technology. The prototypes arc tested against high level objectives, using a set of high level
scenarios for guidance.. We are exploring how to use lightweight formal analysis on rapidly changing in formation, in
such a way asto provide useful and timely feedback. In particular, we are exploring the use of mode] Checking 10
verify the fidelity between aformal model and the prototype. The model checker tests whether the formal model
behaves in the same way as the prototype for a given scenario, while the. formal model can be used to find interesting
ncw scenarios on which to exercise the prototype.
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